Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37177020

RESUMO

We have demonstrated the high-density formation of super-atom-like Si quantum dots with Ge-core on ultrathin SiO2 with control of high-selective chemical-vapor deposition and applied them to an active layer of light-emitting diodes (LEDs). Through luminescence measurements, we have reported characteristics carrier confinement and recombination properties in the Ge-core, reflecting the type II energy band discontinuity between the Si-clad and Ge-core. Additionally, under forward bias conditions over a threshold bias for LEDs, electroluminescence becomes observable at room temperature in the near-infrared region and is attributed to radiative recombination between quantized states in the Ge-core with a deep potential well for holes caused by electron/hole simultaneous injection from the gate and substrate, respectively. The results will lead to the development of Si-based light-emitting devices that are highly compatible with Si-ultra-large-scale integration processing, which has been believed to have extreme difficulty in realizing silicon photonics.

2.
Sci Rep ; 6: 33409, 2016 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-27615374

RESUMO

Spin transistors have attracted tremendous interest as new functional devices. However, few studies have investigated enhancements of the ON/OFF current ratio as a function of the electron spin behavior. Here, we found a significantly high spin-dependent current ratio-more than 10(2) at 1.5 V-when changing the relative direction of the magnetizations between FePt nanodots (NDs) and the CoPtCr-coated atomic force microscope (AFM) probe at room temperature. This means that ON and OFF states were achieved by switching the magnetization of the FePt NDs, which can be regarded as spin-diodes. The FePt magnetic NDs were fabricated by exposing a bi-layer metal stack to a remote H2 plasma (H2-RP) on ~1.7 nm SiO2/Si(100) substrates. The ultrathin bi-layers with a uniform surface coverage are changed drastically to NDs with an areal density as high as ~5 × 10(11) cm(-2). The FePt NDs exhibit a large perpendicular anisotropy with an out-of-plane coercivity of ~4.8 kOe, reflecting the magneto-crystalline anisotropy of (001) oriented L10 phase FePt. We also designed and fabricated double-stacked FePt-NDs with low and high coercivities sandwiched between an ultra-thin Si-oxide interlayer, and confirmed a high ON/OFF current ratio when switching the relative magnetization directions of the low and high coercivity FePt NDs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...